CODING ASSIGNMENT 2

Instructions : Clone your GitHub Classroom repository for this assignment. Follow all
steps below to complete the programming assignment portion of Homework 2. Push
your changes to GitHub and check that all tests are passing in Actions.

After completing each portion of the assignment, compile your code with the command
sh compile.sh and check correctness with make test from within the build directory.
Note, if your local computer uses an alternative to make you will need to compile
manually. Do not change compile.sh as this could cause GitHub Actions to
fail.

If you get confused with GitHub/CMake logistics, refer back to Homework 0 here.

1 Virtual Memory

The goal of this portion of the programming assignment is to convert a virtual address to the corresponding
physical address. You will accomplish this with five helper methods, all within the file translation. cpp.
Helper classes and functions are provided for you in the files src.hpp and src.cpp within the submodule
folder. You will need to use these provided classes/methods to complete this assignment. Brief descriptions

01O Ui Wi =

ST W N

of each are provided below:

Listing 1: TLB* tlb

int tlb—>k; // dimension of the k—way associated cache
bool tlb—>lookup (int index, int tag, PTExx entry);
void tlb-—>add_entry(int index, int tag, PTEx entry);

bool lookup (int idx, int tag, PTExx entry)

{

}

// If an entry is located at ‘idx‘ and ‘tag ‘:

// xentry holds the located PTEx entry
// return true

// Otherwise:

// xentry = NULL

// return false

void add_entry(int index, int tag, PTEx entry)

// Will add given page table entry to the TLB at the given index,

tag

Listing 2: PageTable* table

table—>lookup (int VPN, PTEx*x entry);

void lookup (int VPN, PTExx entry)

{

// Returns entry at index VPN



http://teaching.amandabienz.com/GitHub-Classroom-Tutorial/tutorial.pdf

= W N

= N

Coding Assignment 2 Page 2 of

Listing 3: PTE* entry

int entry-—>PFN; //the entry’s physical frame number

int entry—>valid_bit; //1 if entry is wvalid within page table, 0 otherwise
int entry-—>protect_bit; //1 if page is protected, 0 otherwise

int entry—>present_bit; //1 if page is present in main memory, 0 otherwise

Listing 4: Miscellaneous Methods

segmentation_fault (); //Throws a segmentation fault exception
protection_fault (); //Throws a protection fault exception
page_fault (); //Throws a page fault exception

tlb_miss (); //Throws a TLB miss exception

Listing 5: Defined Variables

#define BITS.PERBYTE //Number of bits per byte
#define TLBMISS //String thrown in tlb_miss () function

. Finding VPN and Offset: Update the method split_virtual_address(---). This method is passed

the following parameters:

int virtual_address; //the virtual address of the instruction
int page_size; //the number of bytes per page

intx VPN; //pointer to which method should return VPN

intx offset; //pointer to which method should return offset

Given the virtual address and page size, return the VPN and offset of the virtual address. Assume the
number of bits within a virtual address is:

sizeof (int) * BITS_PERBYTE

. Finding TLB tag and index: Update the method split _VPN(---). This method is passed the

following parameters:

int VPN; //virtual page number

int k; //number of sets in the TLB (k—way associative)

int* index; //pointer to which method should return TLB index
intx tag; //pointer to which method should return TLB tag

Given the VPN and value of k, return the TLB index and tag.

. Checking TLB for PTE: Update the method TLB_lookup(:--). This method is passed the following

parameters:

TLBx tlb; //pointer to a k—way associative TLB cache object
int VPN; //virtual page number

Call t1b->lookup(---) (defined in Listing 1) to search the TLB for the given VPN. If the VPN is
not in the TLB, throw a TLB miss exception (Listing 4). If a table entry exists in the TLB but it
cannot be accessed, throw a protection fault (Listing 4). Otherwise, return the associated physical
frame number.

. Search the Page Table for the given VPN: Update the method table_lookup(---). This method

is passed the following parameters:

Cont.




Coding Assignment 2 Page 3 of

PageTablex table; //pointer to the page table
TLB+ tlb; //pointer to a k—way associative TLB cache object
int VPN; //virtual page number

Call table->lookup(VPN) (Listing 2) to get the page table entry associated with VPN. If it is not
valid, throw a segmentation fault (Listing 4). If you cannot access the entry, throw a protection fault
(Listing 4). If the entry is not present in the page table, throw a page fault (Listing 4). Otherwise,
add the entry to the TLB using tlb->add_entry(---) (Listing 1). If no fault is thrown, the method
should return the associated physical frame number.

5. Form physical address: Update the method get_physical_address(---). This method is passed
the following parameters:

int PFN; //physical frame number
int offset; //offset of address location within page/frame
int page_size; //number of bytes per page

Return the physical address. Assume the physical address contains the following number of bits:

sizeof (int) = BITS_PER.BYTE

6. Translate the virtual to physical address: Update the method virtual_to_physical(.--). This
method is passed the following parameters:

int virtual_address; //virtual address of instruction
int page_size; //number of bytes per page

TLB+ tlb; //pointer to a k—way associate TLB cache object
PageTablex table; //pointer to the page table object

Using all of the methods that you have completed above, convert a given virtual address to the as-
sociated physical address. First look for the VPN in the TLB, catching any fault that occurs. If a
TLB miss exception is thrown (e.g. you catch the string defined for you (Listing 5)), find the PFN
in the Page Table instead. You will need to use a try-catch statement to catch TLB miss
exceptions (and continue to throw any other fault with ‘throw’). This is a C4++ method,
but doesn’t require knowledge of C++. Information on try/catch/throw is available here.

2 Replacement Algorithms

For this part of the programming assignment, you will write three different frame replacement algorithms.
To do this, you will edit the file replacement.cpp. Each method is passed a FrameList object along with a
pointer to a FrameList. The FrameList object has the following methods:

FrameList* next; //next frame in the linked list

int idx; //Index indicating when associated page was last accessed.
//(higher index: more recently accessed)
//Assume this index is unique

int clock_bit; //bit used for the clock algorithm (0 or 1)

The FrameList* linked list is ordered by arrival, with the head of the list arriving least recently and the tail
arriving most recently. Complete the following methods, each returning a pointer to the FrameList* object
selected for removal. The methods each return an integer of the number of FrameList* objects accessed
throughout the method.

1. FIFO Replacement: Update the method fifo(---). Implement the first in, first out frame replace-

ment algorithm. Return the number of FrameList objects accessed during this algorithm, along with
the FrameList to be removed.

Cont.


https://learn.microsoft.com/en-us/cpp/cpp/try-throw-and-catch-statements-cpp?view=msvc-170

Coding Assignment 2 Page 4 of

2. Least Recently Used Replacement: Update the method 1ru(---). Implement the least recently
used frame replacement algorithm. Return the number of FrameList objects accessed during this
algorithm, along with the FrameList to be removed.

3. Approximate Least Recently Used: Update the method clock lru(---). Implement the clock
algorithm for approximating LRU. Return the number of FrameList objects accessed during this algo-
rithm, along with the FrameList to be removed.

3 Check for Correctness

To check that your code is working, do the following:

1. Make sure all tests are passing locally

sh compile.sh
cd build
make test

2. Push all changes to GitHub

3. Check that your GitHub actions are passing

The End.



	Virtual Memory
	Replacement Algorithms
	Check for Correctness

