N O O W N~

SO W N

CODING ASSIGNMENT 4

Instructions : Clone your GitHub Classroom repository for this assignment. Follow all
steps below to complete the programming assignment portion of Homework 4. Push
your changes to GitHub and check that all tests are passing in Actions.

After completing each portion of the assignment, compile your code with the command
sh compile.sh and check correctness with make test from within the build directory.
Note, if your local computer uses an alternative to make you will need to compile
manually. Do not change compile.sh as this could cause GitHub Actions to
fail.

If you get confused with GitHub/CMake logistics, refer back to Homework 0 here.

1 Producer Consumer Problem

The goal of this portion of the programming assignment is to solve the producer consumer problem. The
producer will put a value into the buffer (if the buffer has space), and the consumer thread will grab a value
from the buffer (if the buffer has entries). The producer thread is passed a data_t* data struct (Listing 1),
which contains the buffer and a value to insert. The consumer thread is passed only the buffer and should
return an integer containing the value it pulls from the buffer. The buffer struct is defined in Listing 2.

Listing 1: data_t* data

buffer_t« buf;

int val;

Listing 2: buffer_t* buf

int limit;

int size;
pthread_cond_t empty;
pthread_cond_t full;
pthread _mutex_t mutex;
sem_t* sem_empty;
sem_tx sem_full;

To complete this portion of the homework, you will need to call the put and get methods, which are
provided for you and defined in Listings 3 and 4. Note, these methods are not currently thread safe,
and it is your job to make sure that multiple threads are unable to call these methods at the
same time.

Listing 3: put

void put(buffer_t* buf, int val)

buf->list [buf->put_ctr] = val;
buf-—>put_ctr = (buf->put_ctr+1) % buf-—>limit ;
buf-—>size++;



http://teaching.amandabienz.com/GitHub-Classroom-Tutorial/tutorial.pdf

S T W N

T W N =

Coding Assignment 4 Page 2 of

Listing 4: get

void get (buffer_t* buf, intx val_ptr)

{
xval_ptr = buf->list [buf->get_ctr];
buf-—>get_ctr = (buf->get_ctr+1) % buf-—>limit;
buf-—>size ——;

To get full credit on this portion of the assignment, you should edit the producer_thread() method
to put the given value in the buffer, but only once the buffer has room. Similarly, you should edit the
consumer_thread () method to get a value from the buffer, but only once the buffer has values. You will
do this in two different ways, described below. The producer thread should return NULL, but the
consumer thread must return the value that is received from the get () method. Note, there may be multiple
consumers, multiple producers, or both.

1.1 Using Condition Variables:

To complete this portion of the homework, edit the file condition var.cpp. Fill in the producer and
consumer methods as described above, using the provided condition variables and mutex (Listing 2). You
can assume all condition variables and locks have been initialized before the method is called.

Some hints:

e Use the methods pthread_cond_wait and pthread_cond_signal.
e The method pthread_cond_wait takes both a condition variable and a locked mutex.
e You have two condition variables to work with, and you should use both of them.

e The size and limit variables, within the buffer_t* struct, can be used to determine if there is buffer
space available and if anything is in the buffer.

e Condition variables require while loops.

1.2 Using Semaphores:

To complete this portion of the homework, edit the file semaphore.cpp. Fill in the producer and consumer
methods as described above, using the provided sempahore variables and mutex. You can assume all condition
variables and locks have been initialized before this method was called.

Some hints:

e Use the methods sem_wait and sem_post.
e You have two semaphores to work with, and you should use both of them.

e The size and limit variables, within the buffer_t* struct, can be used to determine if there is buffer
space available and if anything is in the buffer.

2 Dining Philosophers

The goal of this portion of the programming assignment is to implement the dining philosophers problem.
The method is passed a diners_t* struct, defined in Listing 5.

Listing 5: diners_t* diner

sem_t*x forks;

int size;

pthread _mutex_t mutex;
int philosopher;
boolx eat;

Cont.




IENEGCR N N O O W N

0 O Uik Wi

Coding Assignment 4 Page 3 of

To complete this portion of the assignment, you will need to use the methods defined in Listings 6-8.
The method left returns the semaphore that controls the calling philosophers left fork, while the method
right returns the semaphore that controls the calling philosophers right fork.

Listing 6: left

sem_tx left (diners_t* diner)
{
int pos = diner—>philosopher — 1;
if (pos < 0)
pos += diner—>size;
return diner—>forks[pos];

Listing 7: right

sem_t* right(diners_tx diner)

{
}

return diner—>forks[diner—>philosopher |;

Listing 8: eat

void eat(diners_t* diner)

{

if (sem_trywait(left (diner)) = 0)

sem_post (left (diner));
return;

}
if (sem_trywait(right (diner)) = 0)
sem_post (right (diner));

return;

}

diner—>eat [diner—>philosopher| = true;

A given fork can be acquired with the method sem_wait() and can be released with sem_post(). Once
a philosopher has both forks, that philosopher can call eat by calling the method eat(diners_t* diner).
After the eat method returns, the philosopher should release both forks. The standard approach for
the philosopher problem has all philosophers grab their left fork before any grabs the right.
This can result in a deadlock. You will prevent this deadlock in two different ways, described
below.

2.1 Avoiding the Circular Wait:

For this portion of the assignment, you will edit the file circular.cpp. Complete the dining philosophers
problem described above by avoiding the circular wait. Make sure that all philosophers cannot grab the
same fork first.

2.2 Avoiding the Hold-and-Wait:

For this portion of the assignment, you will edit the file hold_and wait.cpp. Complete the dining philoso-
phers problem described above by avoiding hold-and-wait. Use the mutex lock to have a single philosopher

Cont.




Coding Assignment 4

Page 4 of

grab all necessary forks at once.

3 Check for Correctness

To check that your code is working, do the following:

1. Make sure all tests are passing locally

sh compile.sh
cd build
make test

2. Push all changes to GitHub

3. Check that your GitHub actions are passing

The End.



	Producer Consumer Problem
	Using Condition Variables:
	Using Semaphores:

	Dining Philosophers
	Avoiding the Circular Wait:
	Avoiding the Hold-and-Wait:

	Check for Correctness

