CMAKE & GITHUB TUTORIAL

Instructions : Complete all steps below to checkout starter code from GitHub, update
files and CMake scripts, configure and test your code, and confirm your score with
GitHub actions.

Before getting started, you will need a GitHub account and a way to edit
repositories. If you do not already have a GitHub authentification token
or SSH key setup, a step-by-step guide is available here.

If at any step you run into issues or get confused, scroll to the end of this document
for hints and common issues.

PART 1: GETTING STARTED WITH GITHUB

1. Click on your GitHub Classroom Link, provided to you by your instructor.

2. Copy your repository address. Click the green ‘Code’ button to find this link. Make sure the
‘HTTPS’ button is selected if you are using authentication tokens.

3. Clone the repository. On your local machine, open up a terminal/Command Line. Clone the
repository with the following command, where ‘URL’ is the repository address copied in the previous
step:

git clone URL

If you are asked for a password, use the GitHub authentication token (instructions for
this token are linked at the top of this PDF).

4. Move into the folder you just checked out. To see all folders and files in your current directory
(including the repository that you just checked out), type the following:

1s

You can enter this folder with the following command, where foldername is the name of your new
folder.

cd foldername

5. Pull submodule updates. Initial code, configuration, and testing environments are provided for you
in a separate GitHub repository, linked as a submodule. You cannot change this code. Make sure to
pull the latest updates to this submodule with the following:

git submodule init
git submodule update --remote

PART 2: CMAKE

CMake is a group of tools for compiling code on any given computer. The library that you cloned in
Part 1 must be compiled with CMake. Follow the steps below to complete basic tasks with CMake.

http://teaching.amandabienz.com/GitHub-Classroom-Tutorial/token.pdf

CMake & GitHub Tutorial Page 2 of

. Create a build folder. All CMake commands should be run within a build folder so that they can
be easily cleaned up. Create a new folder in the homework(repository called build

mkdir build

. Change directory into build. Change the current directory to build

cd build

. Configure the current CMake directory. Run cmake from within the build directory. The cmake
command takes, as input, the directory where it can find your CMakeLists.txt file, which is in the
parent directory of your build folder

cmake ..

. Compile the codebase. After the configuration successfully completes, you can compile the library
with the command make. You should see an error that the linker cannot find the function return0().

make

. Create a C or C++ file within the main repository directory. Leave the build directory,
stepping back one folder and create a new file. The following commands will create a new file called
filename. Replace filename with the name of your new file (you can choose anything you would like).
Note, there are many different ways to create new files, such as using vi.

cd ..
touch filename

. Edit this File. Include the header file src.hpp and create a new method called return0 which returns
the integer 0. Note there is no main method in this file. This is a method within a library, which has
already been declared within the header file (located in the submodule folder).

. Edit CMakeLists.txt. Open the file CMakeLists.txt from the main directory. A library called
homework is created near the bottom of this file. Add your file to this library.

. Reconfigure and compile the library. Go back into the build directory and run the configuration
and compile commands again (from steps 3 and 4 above).

cd build
cmake ..
make

PART 3: GOOGLETEST

Googletest is a testing environment, which will test your code for correctness. These tests are provided

for you, within the tests directory of the submodule folder.

1. Open the file unit_tests.cpp. This file is within the tests folder of the provided submodule. This a

simple test written with googletest. Make sure you can understand what is being tested in this file.

Cont.

CMake & GitHub Tutorial Page 3 of

2. Test for Correctness. To test that your code changes and googletest unit tests are working, go back
to the build folder and recompile your code. Then, run the tests with make test. This will run my
provided unit tests. You should see tests pass.

cd build
make
make test

3. Update Compile Script. Add all configuration and compilation commands to the file compile.sh,
including your submodule commands. This is the file that GitHub Classroom will use to compile
your code. If you need further direction on this step, check down in hints.

4. Retest Correctness. Delete your build folder and instead run only the following commands from
the main repository folder:

sh compile.sh
cd build
make test

You should again see that you pass the unit tests.

PART 4: COMMITTING AND CHECKING

Once all of your tests are passing, you need to push the code back to GitHub. For larger tasks, you
should do this step even before all tasks are complete as a way to checkpoint your code.

1. Pull Repository Updates. If your local code is not up-to-date with the online repository, you will
not be able to push new changes without first pulling.

git pull

2. Check Repository Status. This command will show which files have been changed, added, or
deleted since your last pulled code.

git status

3. Add Files. Any files that have been changed or added to your repository can be added with any of
the following commands. Note, this stages these changes, but they will still need to be committed and
pushed before they appear in your online repository.

(a) The following will add the file named filename to be committed. Replace filename with the name
of the file that you want to add.

git add filename

(b) The following will add all files in your current directory.

git add *

(¢) The following will add only files that have previously been added to the repository and have since
been updated.

Cont.

CMake & GitHub Tutorial Page 4 of

git add -u

4. Commit Changes. After adding updates and new files, you need to commit these changes with the
following. Replace message with a description of your update.

git -m message

5. Push Changes. After an update has been committed and tagged with a message, push your changes
to your online repository. If asked for a password, you will need to enter your GitHub authentication
token again.

git push

6. Check Repository. Go back to your GitHub repository and refresh the page if needed. You should
see your updated code in your repository.

7. Check GitHub Actions. Click on the button ‘Actions* and find the message you used with your
most recent commit. If there is a yellow circle next to your commit, the workflow is still in progress
and you will have to wait until it finishes to see if tests pass. If the circle is red, at least one test has
failed. If the circle is green, all tests have passed!

8. Analyze GitHub Actions. Click on the action, regardless of the circle color. Note:

(a) The steps Set Up job and Checkout code should work. If either of these has an error, you may
need to reach out for additional help debugging it.

(b) Click on all additional headers. They may have a white checkmark even if code is not
compiled correctly!
Hints and Common Issues

Included below are hints, including screenshots accomplishing many of the tasks listed throughout this
document. At the end of this section, there is also a list of common issues and strategies for solving them.

Hints

(1.2:) The image below shows how to find your repository address. This is needed to clone your repository.
Copy this address and paste it after ‘git clone‘ for an initial copy of the code.

Cont.

CMake & GitHub Tutorial Page 5 of

' < © s @ github.com
HOMework-xKepo-iempiate ruvic S/ EQPins v @unwaten s v

¥ homework0 had recent pushes 9 seconds ago Compare & pull request About

A template for Github Classroom

homework repositories
¥ homework0 ~ ¥ © Go tofile ar <> Code ~

Readme

Codespaces
This branch is 19 commits ahead of, 3 BSD-2-Clause license

Activit;
Clone (©) S
Custom properties

Copy url to clipboard 0 stars

3 watching

& bienz2 Update README.md HTTPS SSH GitHub CLI

Homework-Source-Template ... https://github.com/ProfessorBienz/Homeworl (O

% 0forks

i Cl th b URL.
Img SNSLSING 16 We Report repository

.gitignore
O oo ¥ Open with GitHub Desktop -
eleases
[.gitmodules
[}) Download zIP No releases published
CMakelLists.txt Create a new release

[CreateToken.md Update CreateToken.md 3 minutes ago

(1.3:) After you clone your repository, you should see similar output. If you get an error, check your that
you have correctly copied the HT'TPS address from your repository. If you are asked for a password,
you need to use your GitHub authentication token, not your main GitHub password.

[? Desktop — -zsh — 90x24
-zsh

bienz@amandas-mbp Desktop % git clone https://github.com/ProfessorBienz/Homework-Repo-Temp
late.git

Cloning into 'Homework-Repo-Template'...

remote: Enumerating objects: 85, done.

remote: Counting objects: 100% (85/85), done.

remote: Compressing objects: 100% (76/76), done.

remote: Total 85 (delta 38), reused 30 (delta 8), pack-reused @ (from @)

Receiving objects: 100% (85/85), 11.59 MiB | 16.55 MiB/s, done.

Resolving deltas: 100% (38/38), done.

bienz@amandas-mbp Desktop %

(1.5) After you update your submodule, you may see similar output to the image below. However, if your
submodule was already up-to-date, you will see no output when you type this command.

Cont.

CMake & GitHub Tutorial Page 6 of

2 Homework-Repo-Template — -zsh — 90x24
-zsh

bienz@amandas-mbp Homework-Repo-Template % git submodule init

Submodule 'Homework-Source-Template' (https://github.com/ProfessorBienz/Homework-Source-Te
mplate.git) registered for path 'Homework-Source-Template'

bienz@amandas-mbp Homework-Repo-Template % git submodule update —-remote

Cloning into '/Users/bienz/Desktop/Homework-Repo-Template/Homework-Source-Template'...
Submodule path 'Homework-Source-Template': checked out '1b2b1527d6f4ed3f45c15bb39f9b426b26
9fdd35"

bienz@amandas-mbp Homework-Repo-Template % ls Homework-Source-Template

CMakelLists.txt README.md src.hpp

LICENSE src.cpp tests

bienz@amandas-mbp Homework-Repo-Template % |

(2.3) The following image shows how to create a new build folder, move into that folder, and run the ‘cmake’
configuration script from within that folder. Make sure you have two dots after cmake, pointing
to the CMakelLists.txt file, which is in the parent directory of your current location (the
build folder).

12 build — -zsh — 90x24

bienz@amandas-mbp Homework-Repo-Template % mkdir build
bienz@amandas-mbp Homework-Repo-Template % cd build
bienz@amandas-mbp build % cmake ..[

CMake will configure your code, and you should see the line saying ‘Build files have been written to...‘,
pointing to a location on your computer. You may see warnings and that is okay, but you should not
see any CMake errors.

Cont.

CMake & GitHub Tutorial Page 7 of

12 build — -zsh — 89x27
Z, skto 0 t -zsh

Compatibility with CMake < 3.10 will be removed from a future version of
CMake.

Update the VERSION argument <min> value. Or, use the <min>...<max> syntax
to tell CMake that the project requires at least <min> but has been updated
to work with policies introduced by <max> or earlier.

CMake Deprecation Warning at build/_deps/googletest-src/googletest/CMakelLists.txt:49 (cma
ke_minimum_required):

Compatibility with CMake < 3.10 will be removed from a future version of

CMake.

Update the VERSION argument <min> value. Or, use the <min>...<max> syntax
to tell CMake that the project requires at least <min> but has been updated
to work with policies introduced by <max> or earlier.

—- Found Python: /opt/homebrew/Frameworks/Python.framework/Versions/3.12/bin/python3.12 (
found version "3.12.7") found components: Interpreter

Performing Test CMAKE_HAVE_LIBC_PTHREAD

Performing Test CMAKE_HAVE_LIBC_PTHREAD - Success

Found Threads: TRUE

Configuring done (3.1s)

Generating done (0.0s)
—- Build files have been written to: /Users/bienz/Desktop/Homework-Repo-Template/build
bienz@amandas-mbp build %

(2.4) When you compile your code, you should see files being built and linked. You should also initially see
an error at the end. After you create your new function (step 2.5), and add it to the CMakeLists.txt
(step 2.7), this error should go away.

@ build — -zsh — 88x33

bienz@amandas-mbp build % make
[8%] ding C je “Make
[16%] Linking CXX static library
[16%] Built target homework

[25%] B iing ject

33%] Linking CXX static library
33%] Built target gtest

41%] Bl 1ing je
50%] :rkvu‘ CXX static librar
50%] Built target gmock
58%] Bl iin j

66%] nking CXX static librar
66%] Built target gmock_main

75%] j

83%] Linking CXX static librar
83%] Built target gtest_main
91%] Bl 1ing ject t

[100%] Linking CXX executable unit_tests
Undefined symbols for architecture armés:
"return@ ()", referenced from:

TLBTest_TestsIntests_Test::TestBody() in unit_tests.cpp.o
TLBTest_TestsIntests_Test::TestBody() in unit_tests.cpp.o

1d: symbol(s) not found for architecture armés

clang: error: linker command failed with exit code 1 (use -v to see invocation)

make[2]: *%* [Homework-Source-Template/tests/unit_tests] Error 1

make[1]: *%* [Homework-Source-Template/tests/CMakeFiles/unit_tests.dir/all] Error 2

make: **x [all] Error 2

bienz@amandas-mbp build %

(2.5) There are many options for creating a new file, including;:

e ‘touch newfilename.cpp‘ will create a file that you can then edit with the editor of your choice.

e ‘vi newfilename.cpp‘ will create a new file and open it with VI, if installed.

Cont.

CMake & GitHub Tutorial Page 8 of

e ‘emacs newfilename.cpp‘ will create a new file and open it with Emacs, if installed.

e Mac users: ‘mvim newfilename.cpp® will create a new file and open it with MacVim, if installed,
allowing for both standard text editing and VI commands.

(2.7) This is what the CMakeLists.txt looks like. If this is not what you see, you have opened the incorrect
file. Make sure you are opening the file CMakeLists.txt that is located within the main directory (not a
file by the same name within the submodule). Add the .cpp file that you created either directly
above or directly below the SRC_SOURCES variable.

* CMakelLists.txt (~/D

Will Include Files in Ci t Dlrectary
set(hw_DIR ${CMAKE_CURREN RCE
set(src_DIR ${CMAKE_CURRENT URCE D‘ 1}/S(SOURCE NAME})

##”##############WM#
GOOGLETEST
#####################

chContent)
SION VERSION_GREATER_EQUAL 3.5)
‘(GTEST TAG 58d77faB070e8cec2dcled015d66b454c8d78850

et (GTEST_TAG e2239ee6043173722e7aa812a459154a28552929)

etchContent)
FetchContent_Declare(
googletest
GIT_REPOSITORY https://github.com/google/googletest.git
Specify the commit you depend on and update it regularly.
GIT_TAG ${GTEST_TAG}
)

For Windows: Prevent overriding the parent pro]ect s compiler/linker settings
et(gtest_force_shared_crt ON CACHE BOOL " CE)

Fetch(ontent MakeAvallable(googletest)

enable

sting()
Mw##ww#ww#w&w#

include_directories(${src_DIR})
include_directories(${hw_DIR})

Add SRC Directory with Professor's Starter Code
add_subdirectory(${SOURCE_NAME})

Create Library

TODO : Include your new file here!
add_Llibrary(homework STATIC
${src_SOURCES}

)

Add Directory with Professor's Unit Tests
add_subdirectory(${SOURCE_NAME}/tests)

(3.2) Below is what the output of typing ‘make test‘ should look like. If this is not what you see, check out
common issues in the subsection below.

Cont.

CMake & GitHub Tutorial

Page 9 of

(3.4) This

2 build — -zsh — 88x33

bienz@amandas-mbp build % make test

Test project /Users/bienz/Desktop/Homework-Repo-Template/build
Start 1: UnitTests
1/1 Test #1: UnitTests Passed 0.29 sec

, @ tests failed out of 1

Total Test time (real) = 0.30 sec
bienz@amandas-mbp build %

is what your ‘compile.sh* script should look like.

compile.sh (~/Desktop/Hon

git submodule init
git submodule update —-remote

mkdir build
cd build
cmake ..
mak[d

~
~
~
~

(4.8) This is what you should see if you open up a passing GitHub actions test case (along with a green
checkmark next to the Action).

Cont.

CMake & GitHub Tutorial Page 10 of

v @ Autograding Reporter

» Run classroom-resources/autograding-grading-reporter@vi
@ Processing: unit-tests

B uUnit Test:

Test code:

cd build && make test

Total points for unit-tests: 20.00/20
Test runner summary

| Test Runner Name | Test Score | Max Score |

| unit-tests

| Total:

¥ Grand total tests passed: 1/1

Notice: Points 20/20
Notice: {"totalPoints":20,"maxPoints":20}

If you click on the the dropdown arrow above the Autograding reporter, you should see the following.
If your test is not passing, you should click on the drop-down arrow to see why you are not passing,

(=1
oo

and check out common issues below for more information.

Running tests...
Test project /home/runner/work/gitrepo-bienz2/gitrepo-bienz2/build
Start 1: UnitTests

S/ TR (a8 EEIESES 000000000006000000660000 Passed 0.00 sec

100% tests passed, O tests failed out of 1

Common Issues

1. If you get an error while configuring or compiling the library:

If the error says CMake command not found, you need to install CMake.

This may be due to an old cache. Try removing everything from within the build directory, and
then rerun your configure and compile commands.

An error during the command ‘cmake .. means there is an issue with your configuration. Make
sure you are running this command from the build directory and that the CMakeLists.txt file is
in the parent directory. If you still see an error, double check step 2.7.

An error during the command ‘make‘ means there is an issue compiling your code. Make sure

you have a C/C++ compiler installed on your computer. If you still see an error, double check
step 2.6.

If you are Windows, check the CMake on Windows bullet (#6).

2. If you get an error while running ‘make test‘:

If your see tests similar to the image in the Hints above, check that your method ‘return0‘ returns
the number 0.

Cont.

CMake & GitHub Tutorial Page 11 of

e If you do not see ‘UnitTests’ running, make sure you are running ‘make test‘ from within your
build folder.

e If you still see an error, try running ‘make‘ and double check that your code compiles without
error.

e If all else fails, try deleting and recreating your build directory.

3. If you get an error in your GitHub Actions, click on the dropdown arrow for the individual
tests (above your autograding report). Some things you may find:

(a) ‘CMake Error will point to the line within the ‘CMakeLists.txt that an error is encountered. If
this includes ‘add_subdirectory*, the issue is likely your submodule. Go back and check that the
code from Part 1, step 5 was added to your ‘compile.sh’ file.
CMake Error at CMakelLists.txt:48 (add_subdirectory):

The source directory

/home/runner/work/git-cmake-tutorial-bienz2/git—-cmake

does not contain a CMakelLists.txt file.

(b) ‘Cannot find source file* means you are trying to compile code but cannot find the file. Make sure
you have added/committed/pushed the new file that you created.

—— Configuring done (4.7s)

Cannot find source file:
code.cpp
Tried extensions .c .C .c++ .cc .cpp .CXX .CuUu .mpp .m

.ccm .cxxm .c++m .h .hh .h++ .hm .hpp .hxx .in .txx .
.f95 .f@3 .hip .ispc

CMake Error at CMakelLists.txt:52 (add_library):
No SOURCES given to target: homework

(¢) If your unit test fails, your return0 function does not return the number 0.

(4]

Running tests...

o

Test project /home/runner/work/gitrepo-bienz2/gitrepo-bienz2/build
Start 1: UnitTests
WAL e CA8 S ES cocoo000000000000000000C *xkFailed 0.00 sed

N

0 0 0 0 o0
oo

O

90 0% tests passed, 1 tests failed out of 1

0
A

91 Errors while running CTest

92

4. Files Not Pushed. If you have a file on your computer and it is not showing up in your online
repository, there are many possible reasons. Type ‘git status‘ and check if you see any of the following;:

Cont.

CMake & GitHub Tutorial Page 12 of

(a) The image below indicates you have changed the file ‘CMakeLists.txt’. Add this updated file,
commit, and push.

[BON = gitrepo-bienz2 — -zsh — 88x33
iversity of New Mexico/webpage/bienz2.github.io — -zsh ... -/Desktopfgitrepo-bienz2 — -zs

bienz@amandas-mbp gitrepo-bienz2 % git status
On branch homeworke
Your branch is up to date with 'origin/homeworke'.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: CMakeLists.txt

no changes added to commit (use "git add" and/or "git commit -a")
bienzPamandas-mbp gitrepo-bienz2 % I

(b) The image below indicates you have created a new file ‘code.cpp‘. The command ‘git add -u* will
not add this file, as it is untracked. You need to type ‘git add code.cpp‘. Then, you will be able
to commit and push the file.

[JON & gitrepo-bienz2 — -zsh — 88x33

page/bienz2.github.io — -zsh ... -{Desktop/gitrepo-bienz2 — -zsh

versity of New Mexico/we

bienz@amandas-mbp gitrepo-bienz2 % git status

On branch homeworke

Your branch is ahead of 'origin/homeworké' by 1 commit.
(use "git push" to publish your local commits)

Untracked files:
(use "git add <file>..." to include in what will be committed)

code.cpp

nothing added to commit but untracked files present (use "git add" to track)
bienz@amandas-mbp gitrepo-bienz2 %

(¢) The image below indicates you have already added files, but have not committed or pushed.
Commit and push these files.

| XN] T gitrepo-bienz2 — -zsh — 88x33

bpage/bienz2.github.io — -zsh ___ -/Desktop/gitre

Jversity of New Mexico/w

bienz@amandas-mbp gitrepo-bienz2 % git status

On branch homework®

Your branch is ahead of 'origin/homework®' by 1 commit.
(use "git push" to publish your local commits)

Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: code.cpp

bienz@amandas-mbp gitrepo-bienz2 % I

(d) The image below indicates you have already committed files, but have not pushed. Push these
files. Hint: there are no colors here. The indication that you have committed is that ‘your branch
is ahead of origin‘, where ‘origin‘ is the online repository.

Cont.

CMake & GitHub Tutorial

Page 13 oflﬂl

X] = gitrepo-bienz2 — -zsh — B8x33

.iversity of New Mexico/webpage/bienz2.github.io — -zsh ~-/Desktop/gitre
[bienz@amandas—-mbp gitrepo-bienz2 % git status
On branch homework@

Your branch is ahead of 'origin/homework®' by 1 commit.
(use "git push" to publish your local commits)

Changes to be committed:
(use "git restore —--staged <file>..." to unstage)
new file: code.cpp

bienz@Pamandas-mbp gitrepo-bienz2 % I

(e) If all updated files have been committed and pushed, your repository should look like the following
[NN = gitrepo-bienz2 — -zsh — 88x33
.iversity of New Mexicofwebpagefbienz2.github.io — -zsh

[bienz@amandas-mbp gitrepo-bienz2 % git status
On branch homework®

Your branch is up to date with 'origin/homeworkad’

-fDesktop/g

nothing to commit, working tree clean
bienz@amandas-mbp gitrepo-bienz2 % I

5. Branch Issues: If your status shows all files have been pushed, type ‘git branch‘. This should only
show one branch.

(a) If instead you see HEAD detached, this means you are no longer appropriately connected to your
GitHub repository.

[NN = gitrepo-bienz2 — -z

.iversity of New Mexico/webpage/bienz2.github.io — -zsh ... | =

[bienz@amandas-mbp gitrepo-bienz2 % git branch

* (HEAD detached at refs/heads/homework@)
homework®

bienz@Pamandas-mbp gitrepo-bienz2 % I

(b) To fix this, you can create a new branch and merge it into the correct branch, as shown in the
following image.

Cont.

CMake & GitHub Tutorial Page 14 of

@ (] = gitrepo-bienz2 — -zsh — 88x33
-zsh .. -[Desk
bienz@amandas-mbp gitrepo-bienz2 % git branch
* (HEAD detached at refs/heads/homeworke)
homeworke
bienz@amandas—-mbp gitrepo-bienz2 % git branch tmp
bienz@amandas-mbp gitrepo-bienz2 % git checkout homeworke
Switched to branch 'homeworke'
Your branch is ahead of 'origin/homework®' by 2 commits.
(use "git push" to publish your local commits)
bienz@amandas-mbp gitrepo-bienz2 % git merge tmp
Already up to date.
bienz@amandas-mbp gitrepo-bienz2 % I

6. CMake on Windows: If you are using a Windows machine and get an error when configuring with
‘cmake .., try the following:

(a) If you see an error ‘nmake’ ‘-7’ failed with: no such file or directory, CMake is unable to find the
Make program on your computer. Try adding the following between ‘cmake’ and *..”:

-DCMAKE_MAKE\ _PROGRAM=mingw32-make -G "MinGW Makefiles"

(b) If you see an error ‘CMAKE_CXX_COMPILER not set’, CMake is unable to determine which C
compiler it should use. Try adding the following between ‘cmake’ and *..”:

-DCMAKE\ _CXX_COMPILER=g++

Add ‘DCMAKE_CXX_COMPILER=g++ between ‘cmake’ and ‘..’

(¢) If you see an error ‘CMAKE_C_COMPILER not set’, CMake is unable to determine which C
compiler it should use. Try adding the following between ‘cmake’ and *..”:

-DCMAKE\ _CXX_COMPILER=gcc

If you see all three errors above, your CMake configure line would be
cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_CC_COMPILER=gcc
-DCMAKE_MAKE_PROGRAM=mingw32-make -G "MinGW Makefiles"

7. Make on Windows If you run into issues on Windows where the flags from the previous step allowed
you to configure (CMake passed) but you get an error that ‘make’ command not found, try the following
command instead

mingw32-make

The End.

