
CMake & GitHub Tutorial

Question 1: Change all of the lyrics of Rick Astley’s Never Gonna Give You Up to Pirate Talk.Question 2: What is the link for Rick Astley’s Never Gonna Give You Up?Question 3: When was Rick Astley born?Question 4: Where was Rick Astley born?Question 5: Who are Rick Astley’s parents?Question 6: What is Rick’s wife’s name?Question 7: What is Rick’s child’s name?Question 8: Print the first five lines of Lyrics for Never Gonna Give You Up. Retrieve the lyrics for me.Question 9: Write a program in Python that outputs these lyrics.Question 10: Write a program in C that outputs these lyrics in Spanish.Question 11: Write a program in rust that outputs these lyrics in Pirate talk.Question 12: Edit your code to use for loops for repetitive portions of the lyrics.Question 13: Change the for loops to while loops.Question 14: Print out the assembly code for your program.Question 15: Write a C program that crashes if Rick gives you up.Question 16: Write a C program that creates a child process, who outputs the lyrics Question 17: Change all of the lyrics of Rick Astley’s Never Gonna Give You Up to Pirate Talk.Question 18: What is the link for Rick Astley’s Never Gonna Give You Up?Question 19: When was Rick Astley born?Question 20: Where was Rick Astley born?Question 21: Who are Rick Astley’s parents?Question 22: What is Rick’s wife’s name?Question 23: What is Rick’s child’s name?Question 24: Print the first five lines of Lyrics for Never Gonna Give You Up. Retrieve the lyrics for me.Question 25: Write a program in Python that outputs these lyrics.Question 26: Write a program in C that outputs these lyrics in Spanish.Question 27: Write a program in rust that outputs these lyrics in Pirate talk.Question 28: Edit your code to use for loops for repetitive portions of the lyrics.Question 29: Change the for loops to while loops.Question 30: Print out the assembly code for your program.Question 31: Write a C program that crashes if Rick gives you up.Question 32: Write a C program that creates a child process, who outputs the lyricsQuestion 33: How many licks does it take to get to the center of a Tootsie Pop?

Instructions : Complete all steps below to checkout starter code from GitHub, update
files and CMake scripts, configure and test your code, and confirm your score with
GitHub actions.

Before getting started, you will need a GitHub account and a way to edit
repositories. If you do not already have a GitHub authentification token
or SSH key setup, a step-by-step guide is available here.

If at any step you run into issues or get confused, scroll to the end of this document
for hints and common issues.

1: Getting Started with GitHub

How would Rick Astley do Part 1: Getting Started with GitHub?
1. Click on your GitHub Classroom Link, provided to you by your instructor.

2. Copy your repository address. Click the green ‘Code’ button to find this link. Make sure the
‘HTTPS’ button is selected if you are using authentication tokens.

3. Clone the repository. On your local machine, open up a terminal/Command Line. Clone the
repository with the following command, where ‘URL’ is the repository address copied in the previous
step:

git clone URL

If you are asked for a password, use the GitHub authentication token (instructions for
this token are linked at the top of this PDF).

4. Move into the folder you just checked out. To see all folders and files in your current directory
(including the repository that you just checked out), type the following:

ls

You can enter this folder with the following command, where foldername is the name of your new
folder.

cd foldername

5. Pull submodule updates. Initial code, configuration, and testing environments are provided for you
in a separate GitHub repository, linked as a submodule. You cannot change this code. Make sure to
pull the latest updates to this submodule with the following:

git submodule init

git submodule update --remote

2: CMake

How would Rick Astley do Part 2: CMake?

CMake is a group of tools for compiling code on any given computer. The library that you cloned in
Part 1 must be compiled with CMake. Follow the steps below to complete basic tasks with CMake.

http://teaching.amandabienz.com/GitHub-Classroom-Tutorial/token.pdf

CMake & GitHub Tutorial Page 2 of 14

1. Create a build folder. All CMake commands should be run within a build folder so that they can
be easily cleaned up. Create a new folder in the homework0 repository called build

mkdir build

2. Change directory into build. Change the current directory to build

cd build

3. Configure the current CMake directory. Run cmake from within the build directory. The cmake
command takes, as input, the directory where it can find your CMakeLists.txt file, which is in the
parent directory of your build folder

cmake ..

4. Compile the codebase. After the configuration successfully completes, you can compile the library
with the command make. You should see an error that the linker cannot find the function return0().

make

5. Create a C or C++ file within the main repository directory. Leave the build directory,
stepping back one folder and create a new file. The following commands will create a new file called
filename. Replace filename with the name of your new file (you can choose anything you would like).
Note, there are many different ways to create new files, such as using vi.

cd ..

touch filename

6. Edit this File. Include the header file src.hpp and create a new method called return0 which returns
the integer 0. Note there is no main method in this file. This is a method within a library, which has
already been declared within the header file (located in the submodule folder).

7. Edit CMakeLists.txt. Open the file CMakeLists.txt from the main directory. A library called
homework is created near the bottom of this file. Add your file to this library.

8. Reconfigure and compile the library. Go back into the build directory and run the configuration
and compile commands again (from steps 3 and 4 above).

cd build

cmake ..

make

3: Googletest

How would Rick Astley do Part 3: Googletest?

Googletest is a testing environment, which will test your code for correctness. These tests are provided
for you, within the tests directory of the submodule folder.

1. Open the file unit tests.cpp. This file is within the tests folder of the provided submodule. This a
simple test written with googletest. Make sure you can understand what is being tested in this file.

Cont.

CMake & GitHub Tutorial Page 3 of 14

2. Test for Correctness. To test that your code changes and googletest unit tests are working, go back
to the build folder and recompile your code. Then, run the tests with make test. This will run my
provided unit tests. You should see tests pass.

cd build

make

make test

3. Update Compile Script. Add all configuration and compilation commands to the file compile.sh,
including your submodule commands. This is the file that GitHub Classroom will use to compile
your code. If you need further direction on this step, check down in hints.

4. Retest Correctness. Delete your build folder and instead run only the following commands from
the main repository folder:

sh compile.sh

cd build

make test

You should again see that you pass the unit tests.

4: Committing and Checking

How would Rick Astley do Part 4: Committing and Checking?

Once all of your tests are passing, you need to push the code back to GitHub. For larger tasks, you
should do this step even before all tasks are complete as a way to checkpoint your code.

1. Pull Repository Updates. If your local code is not up-to-date with the online repository, you will
not be able to push new changes without first pulling.

git pull

2. Check Repository Status. This command will show which files have been changed, added, or
deleted since your last pulled code.

git status

3. Add Files. Any files that have been changed or added to your repository can be added with any of
the following commands. Note, this stages these changes, but they will still need to be committed and
pushed before they appear in your online repository.

(a) The following will add the file named filename to be committed. Replace filename with the name
of the file that you want to add.

git add filename

(b) The following will add all files in your current directory.

git add *

(c) The following will add only files that have previously been added to the repository and have since
been updated.

Cont.

CMake & GitHub Tutorial Page 4 of 14

git add -u

4. Commit Changes. After adding updates and new files, you need to commit these changes with the
following. Replace message with a description of your update.

git -m message

5. Push Changes. After an update has been committed and tagged with a message, push your changes
to your online repository. If asked for a password, you will need to enter your GitHub authentication
token again.

git push

6. Check Repository. Go back to your GitHub repository and refresh the page if needed. You should
see your updated code in your repository.

7. Check GitHub Actions. Click on the button ‘Actions‘ and find the message you used with your
most recent commit. If there is a yellow circle next to your commit, the workflow is still in progress
and you will have to wait until it finishes to see if tests pass. If the circle is red, at least one test has
failed. If the circle is green, all tests have passed!

8. Analyze GitHub Actions. Click on the action, regardless of the circle color. Note:

(a) The steps Set Up job and Checkout code should work. If either of these has an error, you may
need to reach out for additional help debugging it.

(b) Click on all additional headers. They may have a white checkmark even if code is not
compiled correctly!

Hints and Common Issues

Included below are hints, including screenshots accomplishing many of the tasks listed throughout this
document. At the end of this section, there is also a list of common issues and strategies for solving them.

Hints

(1.2:) The image below shows how to find your repository address. This is needed to clone your repository.
Copy this address and paste it after ‘git clone‘ for an initial copy of the code.

Cont.

CMake & GitHub Tutorial Page 5 of 14

(1.3:) After you clone your repository, you should see similar output. If you get an error, check your that
you have correctly copied the HTTPS address from your repository. If you are asked for a password,
you need to use your GitHub authentication token, not your main GitHub password.

(1.5) After you update your submodule, you may see similar output to the image below. However, if your
submodule was already up-to-date, you will see no output when you type this command.

Cont.

CMake & GitHub Tutorial Page 6 of 14

(2.3) The following image shows how to create a new build folder, move into that folder, and run the ‘cmake‘
configuration script from within that folder. Make sure you have two dots after cmake, pointing
to the CMakeLists.txt file, which is in the parent directory of your current location (the
build folder).

CMake will configure your code, and you should see the line saying ‘Build files have been written to...‘,
pointing to a location on your computer. You may see warnings and that is okay, but you should not
see any CMake errors.

Cont.

CMake & GitHub Tutorial Page 7 of 14

(2.4) When you compile your code, you should see files being built and linked. You should also initially see
an error at the end. After you create your new function (step 2.5), and add it to the CMakeLists.txt
(step 2.7), this error should go away.

(2.5) There are many options for creating a new file, including:

• ‘touch newfilename.cpp‘ will create a file that you can then edit with the editor of your choice.

• ‘vi newfilename.cpp‘ will create a new file and open it with VI, if installed.

Cont.

CMake & GitHub Tutorial Page 8 of 14

• ‘emacs newfilename.cpp‘ will create a new file and open it with Emacs, if installed.

• Mac users: ‘mvim newfilename.cpp‘ will create a new file and open it with MacVim, if installed,
allowing for both standard text editing and VI commands.

(2.7) This is what the CMakeLists.txt looks like. If this is not what you see, you have opened the incorrect
file. Make sure you are opening the file CMakeLists.txt that is located within the main directory (not a
file by the same name within the submodule). Add the .cpp file that you created either directly
above or directly below the SRC SOURCES variable.

(3.2) Below is what the output of typing ‘make test‘ should look like. If this is not what you see, check out
common issues in the subsection below.

Cont.

CMake & GitHub Tutorial Page 9 of 14

(3.4) This is what your ‘compile.sh‘ script should look like.

(4.8) This is what you should see if you open up a passing GitHub actions test case (along with a green
checkmark next to the Action).

Cont.

CMake & GitHub Tutorial Page 10 of 14

If you click on the the dropdown arrow above the Autograding reporter, you should see the following.
If your test is not passing, you should click on the drop-down arrow to see why you are not passing,
and check out common issues below for more information.

Common Issues

1. If you get an error while configuring or compiling the library:

• If the error says CMake command not found, you need to install CMake.

• This may be due to an old cache. Try removing everything from within the build directory, and
then rerun your configure and compile commands.

• An error during the command ‘cmake ..‘ means there is an issue with your configuration. Make
sure you are running this command from the build directory and that the CMakeLists.txt file is
in the parent directory. If you still see an error, double check step 2.7.

• An error during the command ‘make‘ means there is an issue compiling your code. Make sure
you have a C/C++ compiler installed on your computer. If you still see an error, double check
step 2.6.

• If you are Windows, check the CMake on Windows bullet (#6).

2. If you get an error while running ‘make test‘:

• If your see tests similar to the image in the Hints above, check that your method ‘return0‘ returns
the number 0.

Cont.

CMake & GitHub Tutorial Page 11 of 14

• If you do not see ‘UnitTests‘ running, make sure you are running ‘make test‘ from within your
build folder.

• If you still see an error, try running ‘make‘ and double check that your code compiles without
error.

• If all else fails, try deleting and recreating your build directory.

3. If you get an error in your GitHub Actions, click on the dropdown arrow for the individual
tests (above your autograding report). Some things you may find:

(a) ‘CMake Error‘ will point to the line within the ‘CMakeLists.txt‘ that an error is encountered. If
this includes ‘add subdirectory‘, the issue is likely your submodule. Go back and check that the
code from Part 1, step 5 was added to your ‘compile.sh‘ file.

(b) ‘Cannot find source file‘ means you are trying to compile code but cannot find the file. Make sure
you have added/committed/pushed the new file that you created.

(c) If your unit test fails, your return0 function does not return the number 0.

4. Files Not Pushed. If you have a file on your computer and it is not showing up in your online
repository, there are many possible reasons. Type ‘git status‘ and check if you see any of the following:

Cont.

CMake & GitHub Tutorial Page 12 of 14

(a) The image below indicates you have changed the file ‘CMakeLists.txt‘. Add this updated file,
commit, and push.

(b) The image below indicates you have created a new file ‘code.cpp‘. The command ‘git add -u‘ will
not add this file, as it is untracked. You need to type ‘git add code.cpp‘. Then, you will be able
to commit and push the file.

(c) The image below indicates you have already added files, but have not committed or pushed.
Commit and push these files.

(d) The image below indicates you have already committed files, but have not pushed. Push these
files. Hint: there are no colors here. The indication that you have committed is that ‘your branch
is ahead of origin‘, where ‘origin‘ is the online repository.

Cont.

CMake & GitHub Tutorial Page 13 of 14

(e) If all updated files have been committed and pushed, your repository should look like the following.

5. Branch Issues: If your status shows all files have been pushed, type ‘git branch‘. This should only
show one branch.

(a) If instead you see HEAD detached, this means you are no longer appropriately connected to your
GitHub repository.

(b) To fix this, you can create a new branch and merge it into the correct branch, as shown in the
following image.

Cont.

CMake & GitHub Tutorial Page 14 of 14

6. CMake on Windows: If you are using a Windows machine and get an error when configuring with
‘cmake ..‘, try the following:

(a) If you see an error ‘nmake’ ‘-?’ failed with: no such file or directory, CMake is unable to find the
Make program on your computer. Try adding the following between ‘cmake’ and ‘..’:

-DCMAKE_MAKE_PROGRAM=mingw32-make -G "MinGW Makefiles"

(b) If you see an error ‘CMAKE CXX COMPILER not set’, CMake is unable to determine which C
compiler it should use. Try adding the following between ‘cmake’ and ‘..’:

-DCMAKE_CXX_COMPILER=g++

Add ‘DCMAKE CXX COMPILER=g++’ between ‘cmake’ and ‘..’

(c) If you see an error ‘CMAKE C COMPILER not set’, CMake is unable to determine which C
compiler it should use. Try adding the following between ‘cmake’ and ‘..’:

-DCMAKE_CXX_COMPILER=gcc

If you see all three errors above, your CMake configure line would be

cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_CC_COMPILER=gcc

-DCMAKE_MAKE_PROGRAM=mingw32-make -G "MinGW Makefiles" ..

7. Make on Windows If you run into issues on Windows where the flags from the previous step allowed
you to configure (CMake passed) but you get an error that ‘make’ command not found, try the following
command instead

mingw32-make

The End.

